Potenze di 10 e il SI

Particolare importanza assumono le potenze del numero 10, poiché permettono di semplificare la scrittura di numeri grandissimi e piccolissimi.

Tradurre una potenza di dieci in numero infatti è semplice: escludendo l'esponente zero del primo numero 10^0 , si può verificare che il numero delle unità di ogni esponente è uguale al numero di zeri del risultato!

$$10^6 = 1.000.000 = 1E + 06$$

I numeri possono essere scritti quindi in **forma polinomiale** secondo questa regola:

$$2.325 = 2 \times 10^3 + 3 \times 10^2 + 2 \times 10^1 + 5 \times 10^0$$

Prefissi del SI (International System of Units) e potenze di 10

YOTTA	Y	10^{24}	1.000.000.000.000.	000.000.000.000	1991
ZETTA	${f Z}$	10^{21}	1.000.000.000.000.000.000		
EXA	${f E}$	10^{18}	1.000.000.000.000.000.000		1991
PETA	P	10^{15}	1.000.000.000.000.000		1975 CGMP
TERA-	\mathbf{T}	10^{12}	1.000.000.000.000		1960 confermato
GIGA-	\mathbf{G}	10^{9}	1.000.000.000		1960 confermato
MEGA-	\mathbf{M}	10^{6}	1.000.000		1960 confermato
(miria-)	ma	10^{4}	10.000 NON STANDAR		NON STANDARD
CHILO-	k	10^{3}	1.000 1975 CGMP		
ETTO-	h	10^{2}	100		1975 CGMP
DECA-	da	10^{1}	10 1975 CGMP		
unità-		10^{0}	1		
DECI-	d	10^{-1}	0,1	(1/10)	1975 CGMP
CENTI-	c	10^{-2}	0,01	(1/100)	1975 CGMP
MILLI-	m	10^{-3}	0,001	(1/1000)	1975 CGMP
MICRO-	μ	10^{-6}	0,000.001	(1/1.000.000)	1960 confermato
NANO-	n	10^{-9}	0,000.000.001		1960 confermato
(Angstrom)	Å	10^{-10}	0,000.000.000.1		NON STANDARD
PICO-	p	10^{-12}	0,000.000.000.001		1960 confermato
FEMTO-	$ar{\mathbf{F}}$	10^{-15}	0,000.000.000.000.001		1964
ATTO-	\mathbf{A}	10^{-18}	0,000.000.000.000.000.001		1964
ZEPTO	${f Z}$	10^{-21}	0,000.000.000.000.000.000.001		
YOCTO	y	10^{-24}	0,000.000.000.000.000.000.001		
CGMP General Conference of Weights and Measures					

Vedi l'allegato foglio di calcolo con la tabella completa.

Origine dei prefissi

L'origine di questi prefissi è varia e sono state adottate diverse lingue a base di questo sistema.

Yotta, deriva dal greco όχτώ, con il significato otto (per 1000^8).

Zetta,. deriva dal francese *sept*, con il significato sette (per 1000^7).

Exa deriva dal greco hex che significa sei (per 1000^6).

Tera deriva dal greco τέρας dove ha il significato di "mostro".

Peta deriva dal greco πέντε che significa cinque (per 1000^5).

Giga deriva dal latino γίγας dove ha il significato di "gigante".

Mega deriva dal greco μέγας, dove ha il significato di "grande".

Kilo deriva dal greco χίλιοι e significa curiosamente 1000

Hecto deriva dal greco έκατόν dove ha il significato di 100.

Deca deriva dal greco δέκα dove ha il significato di 10.

Deca deriva dal latino decimus dove ha il significato di decimo.

Centi deriva dal latino *centum* dove ha il significato di centesimo.

Milli deriva dal latino mille (milia) dove ha il significato di millesimo.

Micro deriva dal greco μιχρός dove ha il significato di piccolo.

Nano deriva dal greco νανος dove ha il significato di nano.

Pico deriva dall'italiano o dallo spagnolo *piccolo*.

Atto deriva dal danese atten, che in quella lingua vuol dire diciotto.

Femto deriva da *femten* che significa quindici sia in norvegese che in danese.

Zepto, deriva dal francese *sept*, con il significato di sette.

Yocto deriva dal greco όχτώ dove ha il significato di otto.

Informatica

Nei computer si utilizza il **Byte** (un byte è composto da 8 bit; un bit è lo spazio necessario per memorizzare un'unità del sistema di numerazione binario, cioè 0 oppure 1).

Un Mbyte non è, quindi, pari a 1000 Kbyte ma a 1024 KByte (2^{10}). Un computer dotato di 16 Mbyte ha, infatti, in termini di Kbyte, ben 16.834 Kbyte ($16 \times 1.024 = 16.834$).

Storia e numeri dell'informatica

1969	Nasce la prima edizione di UNIX.			
1971	Disco di sola lettura, di 8 pollici di diametro, chiamato "memory disk", che conteneva 80 kilobytes (KB).	80 KB		
1976	Dischetti da 5" ¼ Creati nel 1976, divengono standard de facto nel 1978.	110KB (1976) Single Side - 160KB Double Side - 360KB (1978) Double Side High Density - 1.2MB		
1980	Seagate Technology introduce il primo hard disk drive per microcomputer, il ST506.	5 MB		
1980	Il primo disco da 1 gigabyte fu l'IBM 3380, grande come un frigo e del peso di 250 Kg.	1 GB		
1981	Viene rilasciato MS-DOS 1.0 nell'agosto 1981.			
1984	Dischetti da 3" ½ Creati nel 1984 da IBM.	Double Density - 720KB High Density - 1.44MB Extended Density (solo IBM) - 2.88MB		
1985	Viene rilasciato Microsoft Windows 1.0 in Novembre.			
1990	Viene rilasciato Microsoft Windows 3.0			
1991	Linus Torvalds crea Linux			
1993	Microsoft rilascia Windows NT 3.1 e Windows for Workgroups 3.11			
1995	Microsoft rilascia Windows 95			
1996	DVD DVD Video Book			
1997	DVD	3.95 GB Write-Once DVD-R Book 2.6 GB rewritable DVD-RAM Book,		
1998	Microsoft rilascia Windows 98 il 25 giugno			
1999	DVD	DVD-RW Book and DVD-RAM Book 4,7 GByte		
2001	Microsoft rilascia Windows Xp nell'ottobre del 2001.			
2006	Microsoft rilascerà Windows Vista			

Sitografia

Système international d'unités

http://www1.bipm.org/jsp/fr/ViewCGPMResolution.jsp?CGPM=11&RES=12

SI prefix

http://en.wikipedia.org/wiki/SI prefix

Where did Kilo, Mega, Giga and all those other prefixes come from? http://www.logitel.co.uk/kmgtpezy.htm

IEC prefixes and symbols for binary multiples http://members.optus.net/alexey/prefBin.xhtml

index to Units & Systems of Units http://www.sizes.com/units/

When is a kilobyte a kibibyte? And an MB an MiB? http://www.iec.ch/zone/si/si_bytes.htm

Appunti delle lezioni di Laboratorio di Strumentazione e Misura http://www.phys.uniroma1.it/web_disp/d6/dispense/Frasca_LSM.pdf

Representation of numerical values and SI units in character strings for information interchanges

http://ietfreport.isoc.org/old-ids/draft-jaffer-metric-interchange-format-03.txt

TheFreeDictionary.com

http://encyclopedia.thefreedictionary.com/SI%20prefix

http://www.iso.org

International Standard ISO 31 (Quantities and units, International Organization for Standardization, 1992) is the most widely respected style guide for the use of units of measurement, and formulas involving them, in scientific and educational documents worldwide. In most countries, the notations used in maths and science textbooks, at schools and universities, follow exactly the guidelines given by ISO 31.

International Standard ISO 1000 SI units and recommendations for the use of their multiples and of certain other units

Measurement Conversion

http://hemsidor.torget.se/users/b/bohjohan/convert/conv e.htm

Metric System and Matter Puzzle

http://www.middleschoolscience.com/metricmatterxword.htm

Evoluzione dei floppy disk

http://it.wikipedia.org/wiki/Evoluzione del floppy disk

Vedi, inoltre, il lavoro collegato sulla notazione esponenziale http://www.pernigo.com/math/aritmetica/potenze